Plongeur

A topological data analysis library.

Core algorithm written in Scala, using Apache Spark.

Executed in a Jupyter notebook, using the Apache Toree kernel and declarative widgets.

Graphs rendered with Sigma/Linkurious, wrapped in a Polymer component.

Reactive machinery powered by Rx RxScala.

Maven dependencies


In [1]:
%AddDeps org.apache.spark spark-mllib_2.10 1.6.2 --repository file:/Users/tmo/.m2/repository
%AddDeps org.scalanlp breeze-natives_2.10 0.12 --repository file:/Users/tmo/.m2/repository
%AddDeps com.github.haifengl smile-core 1.1.0 --transitive --repository file:/Users/tmo/.m2/repository
%AddDeps io.reactivex rxscala_2.10 0.26.1 --transitive --repository file:/Users/tmo/.m2/repository
%AddDeps com.softwaremill.quicklens quicklens_2.10 1.4.4 --repository file:/Users/tmo/.m2/repository
%AddDeps com.chuusai shapeless_2.10 2.3.0 --repository https://oss.sonatype.org/content/repositories/releases/ --repository file:/Users/tmo/.m2/repository
%AddDeps org.tmoerman plongeur-spark_2.10 0.3.22 --repository file:/Users/tmo/.m2/repository


Marking org.apache.spark:spark-mllib_2.10:1.6.2 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/
-> file:/Users/tmo/.m2/repository
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/https/repo1.maven.org/maven2/org/apache/spark/spark-mllib_2.10/1.6.2/spark-mllib_2.10-1.6.2.jar
Marking org.scalanlp:breeze-natives_2.10:0.12 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/
-> file:/Users/tmo/.m2/repository
-> https://repo1.maven.org/maven2
-> New file at /Users/tmo/.m2/repository/org/scalanlp/breeze-natives_2.10/0.12/breeze-natives_2.10-0.12.jar
Marking com.github.haifengl:smile-core:1.1.0 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/
-> file:/Users/tmo/.m2/repository
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/https/repo1.maven.org/maven2/com/github/haifengl/smile-graph/1.1.0/smile-graph-1.1.0.jar
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/https/repo1.maven.org/maven2/com/github/haifengl/smile-core/1.1.0/smile-core-1.1.0.jar
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/https/repo1.maven.org/maven2/com/github/haifengl/smile-data/1.1.0/smile-data-1.1.0.jar
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/https/repo1.maven.org/maven2/com/github/haifengl/smile-math/1.1.0/smile-math-1.1.0.jar
Marking io.reactivex:rxscala_2.10:0.26.1 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/
-> file:/Users/tmo/.m2/repository
-> https://repo1.maven.org/maven2
-> New file at /Users/tmo/.m2/repository/io/reactivex/rxscala_2.10/0.26.1/rxscala_2.10-0.26.1.jar
-> New file at /Users/tmo/.m2/repository/io/reactivex/rxjava/1.1.1/rxjava-1.1.1.jar
Marking com.softwaremill.quicklens:quicklens_2.10:1.4.4 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/
-> file:/Users/tmo/.m2/repository
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/https/repo1.maven.org/maven2/com/softwaremill/quicklens/quicklens_2.10/1.4.4/quicklens_2.10-1.4.4.jar
Marking com.chuusai:shapeless_2.10:2.3.0 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/
-> https://oss.sonatype.org/content/repositories/releases/
-> file:/Users/tmo/.m2/repository
-> https://repo1.maven.org/maven2
-> New file at /var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/https/oss.sonatype.org/content/repositories/releases/com/chuusai/shapeless_2.10/2.3.0/shapeless_2.10-2.3.0.jar
Marking org.tmoerman:plongeur-spark_2.10:0.3.22 for download
Preparing to fetch from:
-> file:/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T/toree_add_deps4864278665654219855/
-> file:/Users/tmo/.m2/repository
-> https://repo1.maven.org/maven2
-> New file at /Users/tmo/.m2/repository/org/tmoerman/plongeur-spark_2.10/0.3.22/plongeur-spark_2.10-0.3.22.jar

In [2]:
%addjar http://localhost:8888/nbextensions/declarativewidgets/declarativewidgets.jar


Starting download from http://localhost:8888/nbextensions/declarativewidgets/declarativewidgets.jar
Finished download of declarativewidgets.jar

Import classes


In [4]:
import rx.lang.scala.{Observer, Subscription, Observable}
import rx.lang.scala.subjects.PublishSubject
import rx.lang.scala.subjects._

import shapeless.HNil

import org.tmoerman.plongeur.tda._
import org.tmoerman.plongeur.tda.Model._
import org.tmoerman.plongeur.tda.cluster.Clustering._
import org.tmoerman.plongeur.tda.cluster.Scale._

import org.tmoerman.plongeur.ui.Controls._

import declarativewidgets._
initWidgets

import declarativewidgets.WidgetChannels.channel



In [6]:
import java.util.concurrent.atomic.AtomicReference

case class SubRef(val ref: AtomicReference[Option[Subscription]] = new AtomicReference[Option[Subscription]](None)) extends Serializable {

    def update(sub: Subscription): Unit = ref.getAndSet(Option(sub)).foreach(old => old.unsubscribe())

    def reset(): Unit = update(null)

}

Import polymer elements

These cells triggers Bower installations of the specified web components.

If it doesn't work, check whether Bower has sufficient permissions to install in the jupyter /nbextensions folder.


In [7]:
%%html
<link rel='import' href='urth_components/paper-slider/paper-slider.html' 
        is='urth-core-import' package='PolymerElements/paper-slider'>
<link rel='import' href='urth_components/paper-button/paper-button.html' 
        is='urth-core-import' package='PolymerElements/paper-button'>
<link rel='import' href='urth_components/plongeur-graph/plongeur-graph.html' 
        is='urth-core-import' package='tmoerman/plongeur-graph'>
<link rel='import' href='urth_components/urth-viz-scatter/urth-viz-scatter.html' is='urth-core-import'>


Out[7]:

Reactive TDA Machine

Keep references to Rx subscriptions apart.


In [6]:
val in$_subRef = SubRef()

Instantiate a PublishSubject. This stream of TDAParams instances represents the input of a TDAMachine. The PublishSubject listens to changes and sets these to the channel "ch_TDA_1" under the "params" key.

TODO: unsubscribe previous on re-evaluation


In [7]:
val in$ = PublishSubject[TDAParams]

in$_subRef.update(in$.subscribe(p => channel("ch_TDA_1").set("params", p.toString)))

Create an initial TDAParams instance. In the same cell, we submit the instance to the PublishSubject.


In [59]:
val tdaParams =
      TDAParams(
        lens = TDALens(          
          Filter("PCA" :: 0 :: HNil, 16, 0.45),
          Filter("PCA" :: 1 :: HNil, 16, 0.45)),
        clusteringParams = ClusteringParams(),
        scaleSelection = histogram(12))

in$.onNext(tdaParams)

Inititalize rdd

In this example, we are using the MNIST data set.


In [9]:
import org.apache.spark.rdd.RDD
import org.apache.commons.lang.StringUtils.trim
import org.apache.spark.mllib.linalg.Vectors

def readDenseData(file: String) = 
    sc.
        textFile(file).
        map(_.split(",").map(trim)).
        zipWithIndex.
        map{ case (a, idx) => dp(idx, Vectors.dense(a.map(_.toDouble))) }

def readMnist(file: String): RDD[DataPoint] =
    sc.
      textFile(file).
      map(s => {
        val columns = s.split(",").map(trim).toList

        columns match {
          case cat :: rawFeatures =>
            val nonZero =
              rawFeatures.
                map(_.toInt).
                zipWithIndex.
                filter{ case (v, idx) => v != 0 }.
                map{ case (v, idx) => (idx, v.toDouble) }

            val sparseFeatures = Vectors.sparse(rawFeatures.size, nonZero)

            (cat, sparseFeatures)
        }}).
      zipWithIndex.
      map {case ((cat, features), idx) => IndexedDataPoint(idx.toInt, features, Some(Map("cat" -> cat)))}

In [10]:
val mnist_path = "/Users/tmo/Work/batiskav/projects/plongeur/scala/plongeur-spark/src/test/resources/mnist/"

val mnist_train = mnist_path + "mnist_train.csv"

In [11]:
val mnistRDD = readMnist(mnist_train)

In [12]:
val mnistSample5pctRDD = mnistRDD.sample(false, .05, 0l).cache

In [13]:
mnistSample5pctRDD.count


Out[13]:
3036

In [14]:
val ctx = TDAContext(sc, mnistSample5pctRDD)

Turn a TDAResult into a data structure.


In [25]:
val r = scala.util.Random

def format(result: TDAResult) = Map(
    "nodes" -> result.clusters.map(c =>
      Map(
        "id"     -> c.id.toString,
        "label"  -> c.id.toString,
        "size"   -> c.dataPoints.size,
        "x"      -> r.nextInt(100),
        "y"      -> r.nextInt(100))),
    "edges" -> result.edges.map(e => {
      val (from, to) = e.toArray match {case Array(f, t) => (f, t)}

      Map(
        "id"     -> s"$from--$to",
        "source" -> from.toString,
        "target" -> to.toString)}))

Run the machine, obtaining an Observable of TDAResult instances


In [18]:
val out$: Observable[(TDAParams, TDAResult)] = TDAMachine.run(ctx, in$)

In [19]:
val out$_subRef = SubRef()

In [26]:
out$_subRef.update(
    out$.subscribe(
        onNext = (t) => t match {case (p, r) => channel("ch_TDA_1").set("result", format(r))},
        onError = (e) => println("Error in TDA machine: ", e)))

Reactive inputs

First, we set up a stream of updates to BASE TDAParams instance.


In [21]:
val pipe$_subRef = SubRef()

val nrBins$    = PublishSubject[Int]
val overlap$   = PublishSubject[Percentage]
val scaleBins$ = PublishSubject[Int]
val collapse$  = PublishSubject[Boolean]

In [22]:
channel("ch_TDA_1").watch("nrBins",  (_: Any, v: Int) => nrBins$.onNext(v))
channel("ch_TDA_1").watch("overlap", (_: Any, v: Int) => overlap$.onNext(BigDecimal(v) / 100))
channel("ch_TDA_1").watch("scaleBins", (_: Any, v: Int) => scaleBins$.onNext(v))
channel("ch_TDA_1").watch("collapse", (_: Any, v: Boolean) => collapse$.onNext(v))

In [32]:
channel("ch_test").getClass


Out[32]:
class declarativewidgets.ConnectedChannel

In [23]:
import TDAParams._

val BASE = 
    TDAParams(
        lens = TDALens(          
          Filter("PCA" :: 0 :: HNil, 50, 0.5)),
        clusteringParams = ClusteringParams(),
        scaleSelection = histogram(50),
        collapseDuplicateClusters = false)

val params$ =
    List(
        nrBins$.map(v => setFilterNrBins(0, v)),
        overlap$.map(v => setFilterOverlap(0, v)),
        scaleBins$.map(v => setHistogramScaleSelectionNrBins(v)),
        collapse$.map(v => (params: TDAParams) => params.copy(collapseDuplicateClusters = v))).
    reduce(_ merge _).
    scan(BASE)((params, fn) => fn(params))

pipe$_subRef.update(params$.subscribe(in$))

channel("ch_TDA_1").set("nrBins", BASE.lens.filters(0).nrBins)
channel("ch_TDA_1").set("overlap", (BASE.lens.filters(0).overlap * 100).toInt)
channel("ch_TDA_1").set("scaleBins", 50)
channel("ch_TDA_1").set("collapse", BASE.collapseDuplicateClusters)

We create two slider widgets that provide the inputs for the nrBins$ and overlap$ Observables.


In [28]:
%%html
<template is='urth-core-bind' channel='ch_TDA_1'>  
    <table class="clean">
        <tr class="title">         
            <th>Filter:</th>
            <th colspan="2" class="code">
                "PCA" :: 0 :: HNil
            </th>
        </tr>
        <tr>
            <th>nr of cover bins</th>
            <td class="wide">
                <paper-slider min="0" max="100" step="1" value="{{nrBins}}"></paper-slider>
            </td>
            <td>[[nrBins]]</td>
        </tr>
        <tr>
            <th>overlap</th>
            <td>
                <paper-slider min="0" max="75" step="1" value="{{overlap}}"></paper-slider>
            </td>
            <td>[[overlap]]%</td>
        </tr>        
        <tr>
            <th>nr of scale bins</th>
            <td>
                <paper-slider min="5" max="150" step="1" value="{{scaleBins}}"></paper-slider>
            </td>
            <td>[[scaleBins]]</td>
        </tr>        
        <tr>
            <th>collapse duplicates</th>
            <td colspan="2">
                <paper-toggle-button checked="{{collapse}}"/>
            </td>
        </tr>
    </table>        
</template>


Out[28]:

In [27]:
%%html
<style>
    table.clean th {
        border-style: hidden;
        white-space: nowrap;
    }
    table.clean td {
        border-style: hidden;
    }
    tr.title {
        text-align: center;
        background-color: beige;
    }
    td.wide {            
        width: 500px;
    }
    td.wide paper-slider {
        width: 100%;
    }
    th.code {
        font-family: courier new,monospace;
    }
</style>


Out[27]:

In [23]:
%%html
<template is='urth-core-bind' channel='ch_TDA_1'>    
    <plongeur-graph data="{{result}}"></plongeur-graph>
</template>


Out[23]:

In [ ]:


In [24]:
%%html
<template is='urth-core-bind' channel='ch_TDA_1'>  
    <div style='background: #FFB; padding: 10px;'>
        <span style='font-family: "Courier"'>[[params]]</span>
    </div>
</template>


Out[24]:

In [ ]: